An autoregressive point source model for spatial processes.

نویسندگان

  • Jacqueline M Hughes-Oliver
  • Tae-Young Heo
  • Sujit K Ghosh
چکیده

We suggest a parametric modeling approach for nonstationary spatial processes driven by point sources. Baseline near-stationarity, which may be reasonable in the absence of a point source, is modeled using a conditional autoregressive (CAR) Markov random field. Variability due to the point source is captured by our proposed autoregressive point source (ARPS) model. Inference proceeds according to the Bayesian hierarchical paradigm, and is implemented using Markov chain Monte Carlo (MCMC) methods. The parametric approach allows a formal test of effectiveness of the point source. Application is made to a real dataset on electric potential measurements in a field containing a metal pole and the finding is that our approach captures the pole's impact on small-scale variability of the electric potential process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Modeling of Non-Point Source Pollution by Long-Term Hydrologic Impact Assessment (L-THIA) (Case Study: Zayandehrood Watershed) in 2015‎

Background & Aims of the Study: In this research, Long-Term Hydrologic Impact Assessment model is selected for simulation of runoff and NPS pollution. The aim of this study is modeling of non-point source pollution by L-THIA model in Zayandehrood watershed in 2015. Materials & Methods: In this study, analytical survey and investigation of references in the context of libr...

متن کامل

Autoregressive Spatial Interpolation and Agricultural Modelling: a Programming Approach

Research in the field of agricultural policy often calls for an explicit representation of geographical aspects of the country or region under consideration. Furthermore, in connection with environmental issues one has to account for spatial interactions, for example in connection with water flows or erosion processes. However, this inevitably leads to the problem that all data needed for estim...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmetrics

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2008